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“Workflow: sequencing and orchestrating operations, along with moving 
data among those operations.” – Deelman et al. 2014.	



“Data movement, rather than computational processing, will be the 
constrained resource at exascale.” – Dongarra et al. 2011.	





Context	
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Scientific Data Analysis Today: ���
Three Assumptions	



1.  Computational science is a complex combination of multiple tasks, 
i.e., a workflow.	



2.  Scientific data analysis requires big science resources, i.e.,  HPC w/ 
some in situ analysis.	



3.  HPC is parallel:	



•  In one task            => data parallelism	



• Between tasks => task parallelism	
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Simple In Situ Workflow Example���
Analysis of Cosmology Simulations	



•  Just one small part of the 
complete cosmology 
workflow	



•  Converts dark matter 
particles to an 
unstructured mesh	



•  Converts an unstructured 
mesh to a regular grid	



•  Computes statistics over 
the grid and visualizes the 
results	





Companion Efforts	


April 2015 NGNS/CS 
Workshop on the Future of 
Scientific Workflows	



ISAV 2016 SC Workshop	


2nd Annual workshop on in 
situ infrastructures for 
analysis and visualization	



WORKS 2016 SC Workshop	


11th annual workshop on 
workflows in support of 
large-scale science	



SC 2015 BOF on 
Characterizing Extreme-
Scale Computational and 
Data-Intensive Workflows	





Terminology	
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Definitions	



•  Workflow: Sequencing and orchestrating operations, along with the attendant tasks 
of, for example, moving data between workflow processing stages. (“programming in 
the large”)	



•  Workflow management systems: Aiding in the automation and capture the 
provenance of these processes, freeing the scientist from the details of the process.	



•  Manage the execution of constituent tasks 	


•  Manage the information exchanged between them	



•  Usability: Benefitting the target audience (computational scientists) on target 
platforms (computing environments) and reused across sciences and computing 
environments and whose performance and correctness can be modeled and verified.	



•  Performance: Overhead (memory, time, power) compared with tight coupling of 
inline functions, impact on simulation compared with no in situ analysis, performance 
compared with models and predictions.	



•  Validation:  Accuracy and scientific reproducibility	
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Workflow = Directed Graph	



• Digraph: not DAG; i.e., can have cycles	


• Nodes:   tasks (can be parallel)	



• Links:     communication between tasks (can be parallel)	





In Situ (IS) and Distributed Area (DA)	



•  In Situ (IS): Within an HPC system (synonyms: in situ, in transit, coprocessing, run-
time, online)	



•  Distributed Area (DA): Across systems, potentially geographically distributed	


•  IS ≈ HPC (high-performance computing), DA ≈ DAIC (distributed-area instruments 

and computing)	
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Different Flavors of In Situ	
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Time division	

 Space division	



Conceptual	
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Conceptual:	


Fast producer and slow consumer	



Space division with 
link resources	



Graph representation	





From Workflows to Dataflows	
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Data Movement Between Components	
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Decoupling by converting a single link into a dataflow enables new 
features such as fault tolerance and improved performance. 	





Links and Dataflows	
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The link can be a simple 
noop or a complete parallel 
program performing 
complex data 
transformations.	


	


The link can be part of the 
producer, consumer, or have 
its own resources.	


	


Dataflow across producer, 
link, consumer is parallel.	


	


Producer, link, and 
consumer are also parallel 
programs with their own 
internal communication.	
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Dataflow Design Patterns	
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Dataflow modes include aggregation, pipelining, and automatic buffering while 
potentially permuting data in an N:M and direct coupling of parallel codes.	





Decaf: Decoupled Dataflows	
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Tom Peterka,	


Franck Cappello, ANL	


Jay Lofstead, SNL	


bitbucket.org/tpeterka1/decaf	


	



Decaf is a programming model and runtime for coupling HPC codes.	


•  Decoupled workflow links with configurable dataflow	


•  Data redistribution patterns	


•  Flow control	


•  Resilience	



Decaf Dataflow Definition

Transport Layer

Workflow Definition

Swift

Flow
control

Nessie Mercury MPI

Python

Data
model

Data
distribution

Resilience

Decaf Runtime

XML Pegasus



Three Examples in Greater Detail	
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Data Redistribution in Molecular Dynamics	
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We applied the decaf redistribution library to the Gromacs molecular dynamics code in 
order to visualize isosurfaces from molecular density. Code complexity was reduced 
dramatically, while maintaining performance improved.	



 [bitbucket.org/tpeterka1/decaf]	


Courtesy Matthieu Dreher 

Dreher and Peterka, Bredala: Semantic Redistribution for In Situ Applications . Cluster 2016. 

Three different redistributions are performed 
while computing an isosurface from an MD 
simulation of 54,000 lipids(2.1M particles). 
[Dreher et al. 2014]	





Density Estimation in Cosmology	
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Left: Strong 
scaling for 5123 
synthetic particles 
various grid sizes. 	


	


Right: Scaling of 
individual 
tessellation and 
density estimation 
components.	



Density estimation: 
Tessellations as 
intermediate 
representations enable 
accurate regular grid 
density estimators.	



Peterka et al., Self-Adaptive Density Estimation, SIAM SISC 2016. 

 [github.com/diatomic/tess2]	





Multiphysics Code Coupling in Nuclear Engineering	
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Coupling proxy app to transfer a solution from a 10243 tetrahedral mesh to a 10243 
hexahedral mesh and back again at up to ½ million blocks (MPI processes) and 43% strong 
scaling efficiency.	



With Vijay Mahadevan, Iulian Grindeanu, Tim Tautges, Andrew Siegel 

The cian proxy app of the CESAR codesign center emulate multiphysics 
coupling between neutronics and thermal hydraulics in nuclear reactor design.	



 [github.com/tpeterka/cian2]	





Advanced Topics	



21	





Combining Simulation and Experiment	
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Ulvestad et al.: In-situ 3D Imaging of Catalysis Induced Strain in Gold Nanoparticles. Physical Chemistry Letters, 2016. 

Science workflow for 
the comparison of a 
molecular dynamics 
simulation with a 
high-energy X-ray 
microscopy of the 
same material system 
includes three 
interrelated 
computational and 
experimental 
workflows.	
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Experiment Workflow (DAC)

Analysis Workflow (DAC)
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CS problem: How to 
combine different (HPC 
and DAIC) WMSs?	





Resilience to Faults	
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Another research topic is modeling the dataflow and 
optimally adding replication and roll back mechanisms 
to recover from hard (fail stop) errors and soft 
errors detected above.	



One of our resilience efforts attempts to detect 
silent data corruption by validating analysis tasks 
with an auxiliary method, usually less expensive 
and less accurate, but hopefully good enough to 
detect soft errors.	





Mini Workflows	
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Decaf examples	


•  Linear 2 nodes	



•  Linear 3 nodes	



•  Cycle 4 nodes	


•  HACC	



•  LAMMPS	



•  Navier-Stokes CFD	



•  Redistribution	


	



Recipe	


•  Take examples/tutorials from software libraries	



•  Add timing and other measurements	



•  Add parameters to make various configurations	


•  Add documentation, release as a benchmark suite	





Wrap up	
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ModSim Challenges for In Situ Workflows 	



•  Data Movement	


•  Data redistribution between pairs of tasks (semantic-preserving)	


•  Parallel data movement design patterns (direct, N:M, aggregate, buffer, pipeline, 

permute)	



•  Resource selection, provisioning, scheduling (compute, network, 
storage)	



•  Interfaces to scheduling systems, coordination of data transfers and task scheduling	


•  Future is to move from static to dynamic resource allocation	



•  Validation	


•  Infrastructure and application monitoring	


•  Understanding workflow behavior (modeling, anomaly detection and diagnosis)	


•  Correctness and performance expectations are fuzzy	



•  Provenance capture	


•  Fast storage and retrieval	


•  Analysis and mining	



•  Productivity, portability	


•  UI and programming models not a Modsim concern, or are they?	





Further Reading	
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